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Anomalous Diffusion of Water in Biological Tissues

M. K6pf,* C. Corinth,* 0. Haferkamp,* and T. F. Nonnenmachert
*Department of Pathology and *Department of Mathematical Physics, University of Ulm, 89061 Ulm, Germany

ABSTRACT This article deals with the characterization of biological tissues and their pathological alterations. For this
purpose, diffusion is measured by NMR in the fringe field of a large superconductor with a field gradient of 50 T/m, which is
rather homogenous and stable. It is due to the unprecedented properties of the gradient that we are able not only to determine
the usual diffusion coefficient, but also to observe the pronounced Non-Debye feature of the relaxation function due to cellular
structure. The dynamics of the probability density follow a stretched exponential or Kohlrausch-Williams-Watts function. In
the long time limit the Fourier transform of the probability density follows a long-tail L6vy function, whose asymptotic is related
to the fractal dimension of the underlying cellular structure. Some of the properties of L6vy walk statistics are discussed and
its potential importance in understanding certain biophysical phenomena like diffusion processes in biological tissues are

pointed out. We present and discuss for the first time NMR data giving evidence for Levy processes that capture the essential
features of the observed power law (scaling) dynamics of water diffusion in fresh tissue specimens: carcinomas, fibrous
mastopathies, adipose and liver tissues.

INTRODUCTION

Increased clinical interest in pathological tissue character-
ization by the method ofNMR (Cheng, 1993; Hazlewood et
al., 1991; Ishida et al., 1995; Le Bihan et al., 1986; Norris
et al., 1994) has lead to the relatively new discipline of
synthetic image calculation with the result that diffusion
imaging might lead to comparable or even better contrasts
than the well-known and widely used NMR parameters, T1
and T2 (Cheng, 1993). The major difference between the
commonly used methods and the present method is that the
former contain spatially resolved information about the
physiological state of tissues. The investigated areas are
generally large, ranging from a few centimeters to whole
body pictures. The associated gradients are small and can be
obtained by switching gradient coils, as required for in vivo
investigations. Depending on the kind of research topic,
method, and instrumental equipment, deviation from the
normal or Debye behavior are of minor importance (Le
Bihan, 1986) or are handeled by phenomenological model-
ling (Cheng, 1993). Complementary to these methods, the
length scales covered by the present method are all together
in the subcellular region (<100 ,u). Instead of getting a
spatial picture we focus on the dynamic properties of water
and fat within a selected thin sheet. Depending upon the
type of relaxation function, we get information about the
distribution of length scales of fluctuations within this sheet.
The influence of cellular structure leads to deviations from
the Debye behavior and is central to the method. Until now
mainly pilot investigations of well-selected model systems
with a specific structure have been carried out at compara-
tively low gradients (Tanner and Steijskal, 1968; Callaghan,
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1991) to verify the NMR characteristics of diffusion at least
in specific cases. The possibility of using the extremely
strong and stable gradient field of a large superconductor
was recognized only recently (Kimmich et al., 1991); as of
now only a few investigations (Kimmich et al., 1991, 1994a,
1994b; Fujara et al., 1994) are available. Of special interest
in these investigations are the characteristic deviations from
the normal diffusional behavior, which establish clearly in
the long-time asymptotics with signal amplitudes of only a
small percentage of the initial amplitude. Thus rather accu-
rate and time-extensive measurements are necessary to get
acceptable signal/noise ratios, even for these model sys-
tems. The deviations are characteristic of the kind of hin-
drance of free diffusion by barriers, compartmentation,
tubes, and bonds involving specific length and time scales.
The field gradient is connected to a "wave vector" or spatial
encoding of nuclear spins. The available field gradients in
the usual pulsed-gradient, stimulated-echo method are
rather small. The corresponding length scale largely ex-
ceeds cellular dimensions. Therefore the influence of cellu-
lar structure is well treated by approximate solutions of the
diffusion equation with boundary conditions. Complemen-
tary to these methods, the field gradient in the supercon
fringe field method (Kimmich et al., 1991, 1994a) exceeds
the field gradient of the pulsed-gradient, stimulated-echo
method by orders of magnitude, thus leading to length
scales well within subcellular regions. Therefore, quite ex-
tended models of data description were expected to apply in
our study of enhanced spatial resolution (because of the
large field gradient), which ranges from approximately 15 to
1 ,um. "Resolution" in this context gives a rough estimate of
the minimum rms-distance a molecule must move to sense
the spatial encoding by the gradient. In the range of avail-
able time scales and wave vectors, all presented measure-
ments of biological tissue are dynamic as a sharp boundary
is not reached by an appreciable fraction bulk water. Instead
of such a precise length scale, a self similar series of length
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scales is observed on a structure with fractal dimension. We
show that some of these features can be explained within the
context of Levy statistics (Nonnenmacher, 1994; Nonnen-
macher and Nonnenmacher, 1989; Glockle and Nonnenma-
cher, 1993; Metzler et al., 1994; Zumofen et al., 1989;
Montroll and Bendler, 1984; West and Shlesinger, 1989;
West and Deering, 1994) that have recently been applied to
physiology (West and Deering, 1994), to ion channel gating
kinetics (Nonnenmacher and Nonnenmacher, 1989; Non-
nenmacher, 1994; West and Deering, 1994), and to self
similar protein dynamics (Glockle and Nonnenmacher,
1995).
The fractal scaling of lengths determines the form of the

probability density over the range of the evolutionary time
scale, accessible to the NMR measurement, i.e., 2-200 ms.
According to the stimulated echo method, we are able to
observe either the dynamic evolution of the probability
density in time or its spatial form at fixed time. The former
is best described by a Kohlrausch-Williams-Watts (KWW)
function, the latter by a power law for long evolutionary
times. The kind of observed relaxation function is quite
different for short, intermediate, and long time scales (7)
and furthermore dependent on cellular structure.
The observed relaxation functions are either

E = exp(-Db)

E = exp - (Db)a

(Debye)

(KWW)

E (q2)-L (power law) (3)

The forms (Eqs. 2 and 3) well describe the asymptotic
decays for glandular and fibrous tissues. In contrast fatty
tissues were described best by the Debye form (Eq. 1).

This means an absence of smaller cellular details and is
generally observed in fatty tissues, whose cells show this
feature. In contrast cancerous tissue is highly structured
because of enlarged number or mitoses, irregular cell form,
and enhanced nucleus/plasma relation. Thus water mole-
cules in the cancer cell experience a hierarchy of structure
that extends to much smaller scales than in well differenti-
ated cells. Sometimes these features are shared with glan-
dular or fibrous tissues and make a distinction difficult.
The quantity b in Eqs. 1 and 2 involves the time scale of

measurement (7), the experimentally given evolutionary
time, and a length scale, given by a wave vector q with the
interrelation

b = 4in2q2T (4)

and D is the usual diffusion coefficient. The Debye behavior
(Eq. 1) is in general only valid for pure fluids or fatty tissue
because of the low degree of compartmentation. For glan-
dular or fibrous tissue, Eq. 1 holds only for short times (T)
due to the contribution of free water (Drost-Hansen and
Clegg, 1976; Hazlewood et al.., 1974). For longer T, a

superposition of Eqs. 1 and 2 is necessary for the description
of the dynamics of the diffusion process. The Fourier de-
scription of probability density at long, fixed T is most

suitable described by Eq. 3. The exponent ,u in Eq. 3
involves the fractal dimension of the underlying geometry.
The often appearing quantity Db can be read as a measure

of ensemble-averaged mean square displacement, hypothet-
ically measured along the contour of microscopic structure
(here in the cellular length scale), which is by no means
identical to the actually measured displacement (by the
wave vector "q") in Euclidean space. Considering
the above-mentioned limited time scale accessible to NMR,
the following peculiarities are obvious: For short evolution-
ary times T, the diffusing water molecules do not have
enough time to sense appreciable features of the local cel-
lular structure, so that the relaxation function is nearly of the
Debye form (Eq. 1). At increased times, large mean square
displacements are always a superposition of smaller ones
and it is exactly the distribution function of these that is
measured. In the absence of structure on small length scales,
displacements on these scales are no more accessible at
large times. The essential difference between the models
(Eqs. 2 and 3) is expressed in different large q-asymptotic as
a curved or straight line, respectively. Details are given in
the appendix.

MATERIALS

Fresh tissue specimens were obtained routinely a few minutes after exci-
sion from the operating rooms and immediately adjusted to the NMR
probe; probe head and sample were held at a constant temperature of 4°C
to minimize degradation processes of the tissues (autolysis). Under these
widely constant conditions 12 carcinomas, 15 fibrous mastopathies, and 5
fatty tissues were investigated. Among the carcinomas there were 2 spec-
imens without fat. To test the method's sensitivity to the influence of
specified tissue structure (glandular, fibrous, and solid) different kinds of
tissue such as thyroid gland (3), muscle (4), and liver (2) were examined
(number of samples in brackets). The NMR investigation lasted between a
few hours and one day; routinely additional TI-measurements were per-
formed (within 10 min) up to five times per sample (beginning, middle, and
end of the main measurements) to have a control over eventually occurring
alterations of the sample that were not observed. After the NMR investi-
gation the specimens were put in 4% formalin buffer and conserved for
histology.

METHODS
Diffusion was measured by the method of the stimulated echo in the fringe
field of the 9.4 T/8.9 cm bore magnet of a Bruker MSL 400 spectrometer
(Karlsruhe, Germany). At 26-cm axial distance from magnet center the flux
density is Bo = 3.9 T, corresponding to 162-MHz proton Larmor fre-
quency. A 31P high power probehead of the Bruker MSL 400 was used. It
provided the appropriate tuning range for protons in this application.
Moreover at this axial distance the field gradient reached its maximum of
50 T/m. This reading was nearly constant over 2 cm and radially flat within
100 KHz over half the bore diameter. The 900 pulse length was 4 As. In the
presence of the strong field gradient, even such short RF pulses are soft;
thus, only 100-,um-thick slices are activated and recorded. With each
sample two series of measurements were performed: First the wave vector
was held fixed, choosing T, = 40, 70, and 100 ,is, and varying the long
evolution interval T2 from 300 pis to 1 s. This first series gives information
about the dynamics of the diffusion process, i.e., the evolution of the
rms-displacement, which follows a KWW function (Eq. 2). In the second
series, T2 was held fixed at logarithmically equidistant intervals, ranging
from 2 to 320 ms and T, was varied from 40 to 600 ,is. In this series the
dynamics of the diffusion process are effectively screened out, thus yield-
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ing a Fourier description of the probability density at fixed time (Eq. 3). At
longer T2 the amplitudes are no longer coincident even at small q vectors,
but diminish significantly because of an efflux of activated triglycerides
from the thin slice of tissue, not essentially larger than the diameter of the
fat cell. The evolution in time is described by a single Debye function with
a significantly smaller diffusion coefficient due to the triglycerides as the
dominating components. This effect is most pronounced on the right graph
of Fig. 2, below.

Data evaluation

According to our setup we have two principal methods of measurement.
First, keeping the preparation interval, TI, or the wave vector small but
fixed and second, stepping the longer evolution interval, T2, we get infor-
mation about the dynamics. For glandular or fibrous tissue the relaxation
process is described by a superposition of a Debye function and a process
of anomalous diffusion:

E = C1 exp[-Db] + C2 exp - (Db)' (5)

The fractions C, and C2 represent the relative contributions of free and
bound cellular water (Drost-Hansen and Clegg, 1976; Hazlewood et al.,
1974). The presence of the first term is indicated by more-or-less pro-
nounced dips or inflection points in the relaxation function under T2-
variation. Further it is physiologically motivated by the fact, that -90% of
cellular water is free and only 10% is bound to macromolecules; the two
compartments do not exchange to an appreciable amount in the time scale
of measurement T2. The bound contribution presents a microscopic heter-
ogeneity that is not averaged out on the time scale of measurement, i.e.,
within milliseconds. Multi-exponential behavior of relaxation that has been
reported (Hazlewood et al., 1974; McSweeney et al., 1984; Bottomley et
al., 1984), and the reduction in the diffusion coefficient are not explained
by the fast exchange model, which holds only for simple solutions such as
protein solutions with physiological concentrations (Taylor et al., 1988).
The effect of compartmentation however leads to the presence of isolated
submagnetizations. In tissues with appreciable fatty content, and hence
macroscopic heterogeneity (Bottomley et al., 1984), the second term in Eq.
5 is overshadowed by the relaxation function of fat. The fatty contribution
follows a Debye function with a significantly different diffusion coefficient
than triglycerides:

E = CI exp[-Dlb] + C2 exp[-D2b).

E2552, T--variation
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In Eq. 6, D, and D2 represent the diffusion coefficient of water in fi-
broglandular and triglycerides in fatty parts with contributions Cl' and
C2'.
A distinction between these cases is sometimes difficult but necessary

in the presence of large error estimates if one tries the wrong function.
With the second method-keeping 12 fixed and stepping the wave

vector-(according to Callaghan (1991)) we formally get the square of a
Fourier description of the spatial probability density at time T2. The form
(Eq. 3) is mostly evident for long T2-values when the molecules begin to
sense structure. The asymptotic (Eq. 3) is often only evident at the longest
accessible T2-values (100-200 ms). In between, sometimes tremendous
deviations from Eq. 3 occur, but the described trend of the asymptotic is
persistent and was used for determination of ,u and was performed by
visual inspection of the relaxation function at longest T2.

RESULTS

In a first section we show characteristic relaxation functions
for the investigated specimen and describe their features.
All relaxation functions are given in a double logarithmic
plot. A Debye function (Eq. 1) or KWW function (Eq. 2)
appear curved, whereas a power law (Eq. 3) gives a straight
line in this representation. This representation was chosen to
cover the very large range of echo amplitudes (4 decades)
and b-values (up to seven decades). The diffusion coeffi-
cient D is given in units of 10-9 sm-2.We give one example
of 1) pure tumor, 2) pure fatty tissue, 3) fatty tumor, 4)
fibrous mastopathy, and 5) liver tissue. We show the relax-
ation functions with both methods, i.e., at constant evolution
time r2 and varying the wave vector (left graph) or varying
the evolution time at fixed wave vector (right graph) side by
side.

Relaxation functions
Pure tumor (Fig. 1)

(6) Fatty tissue (Fig. 2)

2

101

E 100

10o1

10o2

E2552, T 2-variation

i10 100 101 102

b

FIGURE 1 The relaxation function changes from Debye-like for short T2 to power law for long T2 (left graph). The evolution in time is described by a
superposition of a Debye and KWW-function (solid line, x2 = 0.935) with the same diffusion coefficient. For comparison, a single Debye function is shown
with the same scaling (dashed line). This function is clearly insufficient for data description (right graph).
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Fatty tumor (Fig. 3)

Fibrous mastopathy (Fig. 4)

Liver (Fig. 5)

Statistics

In general the ,u-values, i.e., asymptotic slopes in left graphs
of Figs. 1-5 increase with fatty content of the specimens.
Thus the ,u-values of cancerous tissues are in general lower
than the A-values of noncancerous as illustrated in Fig. 6.
To investigate the influence of fatty contributions we give

the relaxation function of pure glandular tissue (liver, Fig.
5). In comparison to Fig. 2 the power law behavior is
evident. Pure tumorous tissue (Fig. 1) is clearly comparable
because of high epithelial content. The finding can be ex-
plained by the higher compartmentation (increased prolif-
eration rate) of tumorous tissue in accordance with results
previously obtained by quite different methods (Rose et al.,
1993).

In cases of nonapplicability of the KWW function but
compartmentation due to fatty content (see Figs. 2-4), this
latter part correlated well with the histologically observed
contribution. In contrast the KWW part showed no correla-
tion to fatty content. Further, we observed the well-known
negative correlation of T1 with fatty content (data not
shown).

Error estimates

In view of the rather large range covered by the echo
amplitudes, considerations of data reproducibility, i.e., in-
fluence of noise and other possible error sources, are quite
necessary. For this purpose the measurements with T2-vari-
ation were repeated under identical conditions as used to
obtain the right graphs of Figs. 1-5 -16 h later with one
tumorous specimen as it was typically available. In Fig. 7

102

1 01

E 100

10o1

E3932, T -variation

the arithmetic averages of the two series are depicted as
points and the standard deviations as error bars, indicating a
measure of reproducibility. In these experiments (see also
right graphs of Figs. 1-5) one data point always represents
an average over 20 accumulations-a rather low number
compared to 600-used in the case of the longest 2-value
in our second type of experiment. Nevertheless data scatter
stays quite small over nearly two orders of magnitude in
echo amplitude. The solid line represents the best fit ob-
tained by a superposition of a Gaussian and KWW function
accordingly (Eq. 5). The Chi-square value refers to the
quality of the fit function to represent the indicated averages
as data points.
A second error source originates from the necessary Tl-

correction for the evolution interval; in general T1 measure-
ments in tissues are associated with an accidental error of
-10% (Bottomley et al., 1984). A more serious problem,
however, is the appearance of tissue heterogeneity, leading to
a superposition of exponential TI-relaxation functions. This is
most pronounced in the presence of fatty contributions, which
show significantly lower T1-values. This difference, however,
is in general not sufficient to allow for a separation of relax-
ation contributions from fatty and nonfatty parts of the speci-
mens. The calculation of T1 is, therefore, performed by the
spectrometer software with one average exponential function;
and this value was used for Tl-correction. Therefore, in Fig. 7
we made no attempt to account for scatter in Tl-values
from the above-mentioned 3-5 control measurements (see
Materials).

DISCUSSION

We have used and pushed forward the rather new method of
the supercon fringe field technique (Kimmich et al., 1991;
Kimmich et al., 1994a) to investigate the diffusion process
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E3932, T 2 -variation

-2 L10-
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100 101 1o2

b

FIGURE 2 The relaxation function changes from Debye-like for short T2 to power law for long T2 (left graph). The limiting slope however is much steeper
than in Fig. 1, indicating that the Debye function is adequate for the whole range of time scales, x2 = 0.446.
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FIGURE 3 The relaxation function consists of a superposition of the properties described in Figs. 1 and 2 according to the relative contributions of
tumorous and fatty tissue, which are comparable. The limiting slope is steeper than for the pure tumor and flatter than for fat (left graph). The evolution
in time is described by a superposition of two Debye functions (Eq. 1) with diffusion coefficients of water and fat, x2 = 0.817. The KWW part of the tumor
component is overwhelmed by the contribution of fat cells (right graph).

in biological tissues. Because the method is sensitive to
dynamic and structural properties of the specimen in the
subcellular region via the diffusion coefficient and Fourier
space description of probability density, the necessity arose

to extend known theories from other topics (Shlesinger,
1985; Gosh and Chakrabarti, 1991; Nonnenmacher and
Nonnenmacher, 1989; Nonnenmacher, 1994; Metzler et al.,
1994; Montroll and Bendler, 1984; West and Shlesinger,
1989) to the new experimental conditions to get a conclu-
sive description of the measurements. Our main goal was to
check the possibilities of the technique in pathological tis-
sue characterization. The two above-mentioned pure tumors
(without fat, Fig. 1) produced rather similar relaxation func-
tions. In general, however, the high heterogeneity of breast

E3008, T 1-variation
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tissue does not allow such clear measurements (Figs. 2-4).
This is in accordance with other nonimaging research
(Eggleston et al., 1975; McSweeney et al., 1984; Bottomley
et al., 1984) where the contribution of fatty parts of the
specimens also presented problems. The breast is uniquely
heterogeneous, being composed of fat, epthelial tissue, and
fibrous supporting stroma in widely differing proportions.
The marked individual variation in the composition of nor-

mal breast tissue, as well as numerous possible benign and
malignant conditions, make it unlikely that a single relax-
ation function could adequately characterize the range of
proton environments present (McSweeney et al., 1984). The
results are at least not in contradiction to other criteria of
histology and cell biology. The range of length (or inverse
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FIGURE 4 The relaxation function changes from Debye-like for short T2 to power law for long T2 (left graph). The evolution in time is described by a

superposition of two Debye processes with diffusion coefficients of water and fat, x2 = 0.817. The tissue consisted of comparable amounts of epithel,
connective tissue, and fat.
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ES3716, T1 -variation ES3716, T2 -variation
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FIGURE 5 The relaxation function changes from Debye-like for short T2 to power law for long r2 (left graph). The evolution in time is described by a

superposition of a Debye and KWW function with the same diffusion coefficient, x2 = 0.975. For comparison a single Debye function with the same scaling
is shown (dashed line). This function is clearly insufficient for data description (right graph).

wave vectors) and time scales accessible by the method
cover specifically the cellular and subcellular regions; thus
the method seems especially suited for these investigations.
Clinical investigations are never based on NMR investiga-
tions alone, but also involve physiological and morpholog-
ical aspects. The kind of method refers to rather different
length scales, largely exceeding the cellular region in the
case of imaging and so do methods and answers. At the
moment the method seems far away from application in
vivo, but offers a new method of basic research.

APPENDIX

The most successful NMR-method for measurement of diffusion is that of
the stimulated echo, according to Tanner and Steijskal (1968), Callaghan
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(1991), and Kimmich et al. (1991). In short, the stimulated echo is pro-
duced by a sequence of three 1r/2 pulses, separated by two variable time
spacings T, and T2 as indicated in Fig. 8.

The fanning out of the isochromates during T, is periodic in space with
the wave vector

q=(2=T)-leyGTI, (Al)

where -y. is the gyromagnetic ratio and G the field gradient. The spins get
spatially encoded by their relative phase relations at the end of T,. During
the second, generally longer evolution interval T2, the molecules diffuse in

E4936, T2 -variation
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FIGURE 6 The asymptotic slope ,u did not exceed the value 2 (dashed
line) for 10 of 12 tumors with low fatty content. This is in contrast to
fibrous diseases, reaching higher values irrespective of fatty content.

FIGURE 7 Illustration for data reproducibility; each point represents the
arithmetic average of two measurements, the error bars indicate the stan-
dard deviation. To show the evolution in data scatter, the point size is
smaller than in Figs. 1-5 (right graphs). The specimen contained about
50% epithel, 30% connective tissue, and 20% fat.
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FIGURE 8 Principle of the stimulated echo method. The transversal magnetization, produced by the initial ir/2 pulse, decays during T, (preparation
period) because of the spatially different Larmor frequencies in the gradient field. The second ir/2 pulse rotates the spins from the x-y plane back to the
z axis, conserving the phase relations among the spins. After the evolution interval T2, the third ir/2 pulse rotates the magnetization again into the x-y plane,
but the direction of the spins is inverted. The faster spins initially lag behind the slower ones and catch up with them to give the stimulated echo at time
T1 after the third 7r/2 pulse (read period). Without additional dephasing during T2 because of diffusion, complete rephasing would occur. Thin (thick) arrows
indicate the position of isochromats in a frame, which rotates at the mean Larmor frequency before (after) the corresponding pulses. An isochromat means
the spins within an infinitesimally thin sheet within the field can be considered locally homogeneous, so all spins of the isochromat have the same local
Larmor frequency. In general T, and T2 are weighted by the transversal (T2) and longitudinal (TI) relaxation times of dipolar interaction, respectively,
affording a corresponding correction. In biologic tissue T2 is always about 40 ms ("free" bulk water) and 5 ms (hydration water), much larger than the
longest T1-values (-1 ms) and can therefore be neglected. However T2 reaches the order of T,; this correction is quite necessary and routinely applied. The
condition T <<T2 (narrow pulse approximation) assumes that negligible diffusion occurs during T, (compared to T2), leading to an effective separation of
time scales and is always given because of the high gradient. The primary echo forms at time T1 after the second -7r/2 pulse in close resemblance to the
Hahn echo (not shown).

space, each suffering an additional net shift in phase. The third pulse leads
to a partial refocusing of the isochromates at T1 after the third pulse. The
amplitude of this ensemble-averaged residual transversal magnetization is
determined by the net phase shift of all nuclear spins during the evolution
interval T2. The shift of an isochromate is caused by the accumulation of
phase shifts due to random migration to places of different field strengths
of Larmor frequencies during this time interval. This ensemble average, in
which each phase term is weighted by the probability for a spin to begin at
r and move to r'in time T2, is given by Callaghan (1991)

E p(r) P(rlr', T2)exp[iyOT1G(r' - r)]dr'dr (A2)

In this general expression p(r) is the probability of finding a molecule at
initial time at place r, giving rise to the nomenclature "a priori probability
density" and is representative of the static structure or form of the inves-
tigated object (here: the cell structure). P(rlr',T2) is the conditional prob-
ability for a molecule, initially at its starting point r, to be found at r'after
the time interval T2. This function for normal diffusion is simply a spread-
ing Gaussian bell shaped curve. As it turns out, it is especially the bell
shaped form and its evolution in time that are subject to essential modifi-
cation. Assuming homogeneity of the sample, meaning simply that varia-
tions in structure or p(r) occur on a much smaller scale than the resolution
or q- , it is possible to define an ensemble-averaged propagator Ps. This
quantity presumes that the mean spread of the probability function is
independent of the starting points r or the structure. With this assumption,
the phase shifts in the integrand of the above expression (Eq. A2) depend

only on the net displacement R = r'-r. Thus Eq. A2 gets the form

J

E = P,(R, T2)exp(i2lrqR)dR.
-oo

(A3)

The signal amplitude corresponds to the Fourier transform of mean con-
ditional probability density.

As mentioned above, the case of normal standard diffusion is described
by a spreading Gaussian function:

(A4)Ps(R, T2) = (4ITDDT2)-1'2)exp(-R2/4DT2)

(in one dimension). The insertion in Eq. A3 gives the usual Debye expres-
sion

E = exp(-4iTq2'T2D) = :exp(-Db) (A5)
One notices, that the quantity b = 4w2q2T2 is already a space-averaged
quantity, implying the same dynamic behavior in all parts of the sample;
this assumption is clearly given in pure fluids, but quite unrealistic in
systems of high heterogeneity. A special complication in our theory is
that we are dealing simultaneously with dynamic and structural param-
eters according to the general form (Eq. A2). In the presence of
structure, diffusion is no longer of the Debye form (Eq. A5) but
becomes anomalous.

The ensemble-averaged mean square displacement in the case of anom-
alous diffusion (dw>2 is the anomalous diffusion exponent (Metzler et al.,
1994), special case dw = 2 corresponds to averaging with respect to a
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Gaussian profile, Eq. A4) is given by

(R2) -T2'w (A6)

For reason of integer dimensionality of the diffusion coefficient we chose
to write the relaxation function of a stretched exponential (Shlesinger,
1985; Gosh and Chakrabarti, 1991) in the form

E = exp[-(Db)a]. (A7)

This holds at least in the small and intermediate q region. By increasing q,
deviations from this dependence appear. The nature of these deviations
becomes more evident in the second series of measurements, keeping T2
large and fixed, while stepping the wave vector. The observed relaxation
function in this case is a Fourier description of the probability density
according to Eq. A2. At short T2 it is often difficult to give a reliable
formula for an appropriate description; at the longest T2-values and/or
largest q values, however, the most suitable form for data description is the
"long tail" (Nonnnenmacher and Nonnenmacher, 1989; Nonnenmacher
1994) with the asymptotic inverse power law representation

E- (q2)-, (A8)

for large times T2. This form is also given by Fourier transforming the
solution of the diffusion equation on a fractal structure with dimension 2 ,u
(Metzler et al., 1994).

To understand the empirical inverse power law ansatz (Eq. A8) within
the context of Levy statistics we go back to Eq. A3, choosing for PS(R, T2)
a generalization of the Gaussian probability profile (Eq. A4), i.e., we take
a KWW probability density profile

PS(R, T2) = Co exp[-(NR/a)1], 0- = (4DT2)19
(A9)

CO is the normalization constant), which leads (when inserted into (A3)) to
the following representation (Montroll and Bendler, 1984; Glockle and
Nonnenmacher, 1993) for the Levy distribution function:

E(q) = (f3/F(1/,B)) 2 (-1)n+l'[F(l + ,Bn)ln!]
n= 1

*(2iTqo-)-(1+Pn) sin( wrBn/2) (AIO)
For

2irqo»>>1, (A1)

the result (Eq. AIO) approaches the asymptotic formula

E(q) (f3/F(l/f3))r(l + B)sin(i,rf/2)

* (2rqo-)-(l+I - q-(l+I3) (A12)

Comparing this result with Eq. A8, we find for sufficiently large o- the
index law

2,u= 1 + 3, (A13)

which relates the index ,3 of Eq. A9 via Eqs. A12 and A13 to the inverse
power law index ,u of Eq. A8. Our experiments carried out at constant,
large T2 values satisfy the condition (Eq. Al 1) for the wave vector region
q under consideration, and consequently we expect that the data should
follow the asymptotic inverse power law (Eq. A12). Indeed, that is pre-
cisely what we observe for this sort of experiment (see left graphs of Figs.
1-5). Thus, to our knowledge, we have demonstrated for the first time
direct evidence for long tail Levy statistics that forms the basic concept for
our interpretation of NMR measurements of slow diffusion dynamics in
fresh tissue specimens.

Dr. T. F. Nonnenmacher was supported by grant SFB 239 from Deutsche
Forschungsgemeinschaft.
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